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This paper presents the analysis of a thin-walled beam with a longitudinal crack of random location and size. The
research objective is to understand the response characteristics of such a damaged beam, with the ultimate goal of
examining the growth of a crack under random loading. This initial study is expected to guide the future analysis of
an aircraft wing with uncertain damage characteristics. An analytical method is presented to obtain the response of a
simple thin-walled beam of a closed cross section with a longitudinal crack of finite size. For random location and size
of the crack, the methodology for the first-order reliability analysis with analytically calculated response is
described. The numerical results of the reliability analysis of the beam for the reliability defined as the nonexceedance

of a limit state are presented.

Nomenclature

A = cross-sectional area, m?

B = body force

d; = ith constant of interfacial compatibility

E = modulus of elasticity, GPa

G = modulus of rigidity, GPa

L, = location of crack, m

L, = size of crack, m

M., M, = bending moments about the x and y axes, N - m

M, = torque about the z axis, N - m

M, = warping moment about the z axis, N - m

my, my, m, = distributed moments about the x,y, and z axes,
N-m/m

m, = distributed warping moment about the z axis,
N-m/m

P, P, = shear forces in x and y direction, N

P, = axial force, N

Pxs Py»> P2 distributed force in x, y and z direction, N/m

T = traction

u,v = x and y displacements in Cartesian coordinate

U, = tangential displacement in normal-tangential
coordinate

w = warping displacement of contour origin

V2 = shear strain in s—z plane

Vier Vyz = shear strains in x—z and y—z planes

0., 0, = pole rotation about the x and y axes

0, = angle of twist about the z axis

A = rate of twist about the z axis

[} = measure of warping

£, = normal strain in the z direction

warping function
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I. Introduction

HE damage in a wing can significantly affect the performance of

an aircraft. With the motivation of examining the performance
of an aircraft with a damaged wing, this study examines the response
of a hollow thin-walled beam with a longitudinal crack. The crack
location and size are considered random. First, the paper presents an
analytical formulation to obtain the response of the beam as a
function of the crack parameters followed by probabilistic and
reliability analysis.

The currently available thin-walled-beam theories are adequate to
model beams without a crack and are able to provide accurate values
of the overall response. They require appropriate modifications to
include a crack, and such modifications are described in this study.
These modifications are able to accurately capture the effect of a
crack on the overall deformation response such as displacements and
angle of twist, but not the stresses near the crack. So this study
focuses primarily on the overall deformation analysis of such a beam.

A beam with a longitudinal crack can be represented by three
interconnected thin-walled beams. The portion of the beam with the
crack can be modeled as an open-section thin-walled beam, whereas
the other two sections are closed-section thin-walled beams. When
subjected to lateral loads or a twisting moment, such a beam is
expected to warp. The thin-walled-beam theories that allow us to
include warping can be mainly divided into two categories: Vlasov
beam theory [1-5] and Benscoter beam theory [1-7]. In this study,
the derivation is based on Benscoter beam theory, where the warping
degree of freedom is considered to be independent of the rate of twist.
This independence between the warping and the rate of twist allows
us the use of the method of least-squares compatibility (introduced
by Gunnlaugsson and Pedersen [2]) to effectively treat the
discontinuity between cracked and uncracked cross sections without
requiring the use of complicated warping functions [8,9]. The
equilibrium equations and the boundary conditions for the system are
derived using the principle of virtual work. The coupled equilibrium
equations are then expressed in state-space form, which allows us to
solve them using the Jordan canonical-form approach. The accuracy
of the calculated response by the proposed approach is verified by a
detailed shell finite element analysis.

To investigate the effect of random characteristics of a crack on the
performance, a first-order reliability analysis method [10-14] is
used. The higher-order analyses [15] could also be used to improve
the reliability estimates, especially if the limit-state boundary is
highly nonlinear. This is not attempted in this study, however, as the
limit-state boundaries used in this study are nearly linear. For the
reliability analysis, the limit state is defined in terms of the angle of
twist exceeding some limiting value. Although the response quantity
of interest is not explicitly defined in terms of the crack parameters,
surrogate methods such as response-surface approaches [16,17] are
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not needed in this case, as the gradients needed for the reliability
analysis can still be calculated by the chain rule and applied at
successive analytical steps that are used in the response calculations.
Publications in this area of interest are, for example, [18-20].

II. Analytical Model of a Thin-Walled
Beam with a Crack

The damaged structure is modeled as a hollow cantilever thin-
walled beam of a rectangular shape, shown in Fig. 1. The damage is
represented by a longitudinal crack of a given length on the top face.
The beam is divided into three parts, with the cracked part between
the two undamaged parts. The undamaged beam portions are repre-
sented as closed-cross-section thin-walled beam, and the damaged
portion as the open-cross-section thin-walled beam, as shown in
Fig. 1. The kinematics of thin-walled beam are described using the
combination of the Cartesian (x,y, z) coordinates and orthogonal
curvilinear (s, n, z) coordinates. For convenience, the global (Z) and
local (z;) coordinates are used interchangeably.

The closed cross section is assumed to be not deformable in its own
plane. Therefore, only rigid-body motions are allowed for the in-
plane displacements. The warping in both cross sections introduces
axial deformations along the z direction and shear deformations in
the plane of the cross section. As shown in Fig. 2, an arbitrary point
P(x,.y,),orso-called pole, is used as the reference point to describe
all displacement fields. The pole of a cross section along the beam
span is chosen at the shear centers, and the angle of twist 6, is
assumed to be about this point. Only two coordinates (6. and warping
displacement w) are needed to define the displacement and stress
field to derive the governing equations. The tangential displacements
v, and the out-of-plane warping displacement w are used to define the
displacement field in the (s, 7, z) coordinate system. To calculate the
warping function of a thin-walled section, we choose a reference
point CO(x.,,Y.,), where the coordinate s =0 for contour
integration. The dimensions b and £, respectively, are the width and
height of the beam cross section.

An additional degree of freedom, ¢(z), is introduced as the
measure of warping. As in Benscoter’s thin-walled-beam theory [1],
it is assumed to be independent of the axial rotation degree of
freedom of the beam. In terms of these kinematics parameters, the
tangential and warping displacements can now be written as
follows [2]:

ax(s)
ds

ay(s)
ds

v,(s,n,z) = u(z) +v(2) +r,(s,m)0.(z2) (1)

w(s, n,2) = wy(2) + y(5)0.(2) — x(5)0,(2) = ¥(s,m)p(z) ()

where u(z) and v(z) are the displacements of the pole in the x and y
directions, respectively; w,(z) is the warping displacement of the
contour origin; 6,(z) and 6,(z) are the rotations of the pole with
respect to the x and y axes, respectively; 0.(z) is the angle of twist;
¥ (s, n) is the warping function; ¢(z) is the measure of warping that
can be approximated to the rate of twist, in special cases; ()’ denotes

the derivative with respect to z; and x(s) and y(s) are Cartesian
coordinate rewritten in terms of the tangential coordinate. In the
linear theory, the rotations of pole are described as follows:

0.(2) = v,.(2) = V' (2) (3)

6,(2) = 7::(2) — /' (2) “4)

where y,. and y,, are transverse strains.

In the shear deformable beam theory, the Euler—Bernoulli
hypothesis is no longer applicable, as y,, # 0 and y,, # 0 and the
transverse strains are included in the derivation. The infinitesimal
strain tensor in linear theory is expressed in terms of displacements.
Based on the thin-walled theory, the energy equation requires only
two main strain components: €., which is the normal strain in the z
direction, and y,, = 2¢,_, which is the shear strain in the s—z plane.
They are defined as follows:

ow
€= 372 (5)
du,  Jw
Vsz = Z'Ssz - a_Z + g (6)

Both the open and the two closed cross sections have the same
geometric center, but different shear centers, thus causing the centers
of twist to be different for the three sections. Although the beam is
subjected only to torsion, it is no longer the case of pure torsion, but
the coupled bending and torsion must be considered. The governing
equations are derived using the principle of virtual work. The
following derivation is based on isotropic materials; however, it
could be generalized to use for the composite materials, see [21]. In
static analysis, the principle of virtual work can be written as

8WIntemal Work 8WExlemal Work = 0 (7)

///v‘”sgdv‘ (///VB‘S”d”fﬁTé’uds) 0 ®

where B and T stand for the body forces and the tractions,
respectively.

For a thin-walled-beam cross section, the body forces are zero in a
static case and the term of work due to strain energy can be simplified.
Considering the tractions in the form of distributed loads along the
span and concentrated loads at certain locations of the span, the
principle of virtual work can be written as follows:

L
/ |:/ (Ee . b¢.. + Gy,.8y,,) dA — (p,Su + pyév + p.dw
o LJa

+ m, 80, + m,80, + m_86, — mw8¢)] dZ — (P.8u + P,dv
+ P.dw + M 80, + M 80, + M .30, — M ,6¢)| -7, = 0 )

where E is Young’s modulus; G is the modulus of torsional rigidity;
P Py» and p, are the distributed forces in the x, y, and z directions,

L,
L.
11 2.2 33 |%
n I3 I3
L
21 22 3
— —

e

[ss ]

Fig. 1 Damaged structure modeled with a cracked thin-walled cantilever.
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respectively; m,, my, and m_ are the distributed moments with
respect to the x, y, and z axes, respectively; and m,, is the distributed
warping torque about the z axis; P, and P, are the shear forces in the x
and y directions, respectively; P, is the axial force; M, and M , are the
bending moments with respect to the x and y axes, respectively; M. is
the torque; M, is the warping moment or the so-called bimoment;
and Z, is the location of concentrated load that can be between
Oand L.

In the spanwise direction, the beam model consists of three
portions. For convenience, the local coordinates are mainly used as
the references in the spanwise direction. The first portion has
boundaries from z; = 0to z; = /;, the second portion with the crack
spans from z, = 0 to z, = /,, and the last portion spans from z; = 0
to z3 = [3. For the plane of cross section, however, the global
coordinates are still used. The contour origin is chosen so that the
warping displacement of the contour origin, w,(z), is zero.
Substituting all stress and strain components and applying the
principle of virtual work, the system of equilibrium equations and the
corresponding boundary-continuity conditions are obtained as
follows:

— EAw” = p, (10

- G‘Ié‘yeg + GQ}'z(z)/ - GQxy(vN + 0«’\) - Gny(MN - 0;) = DPx

amn
- G‘Iexe/z, + Gsz(p/ - GQxx(vN + 0:() - GQxy(u” - 0;) = py
12)
Erzx(p” - El)uce;/ + EI,\)G;/ + G‘ngeé - Gsz¢
+ GQXX(U/ + 9\) + GQX_\'(”/ - 0\) = my (13)
— ET,¢" + EL,0, — EL,0! — GJy,6. + GO,.¢
-GO,,(vV +0,) —GQ,,(u' — 6,) =m, (14)

— G‘Igeeg + GJ@Z¢/ — GJQX(UH + 9,() — GJ@Y(M// — 9;) =m,
15)

—ET,¢" + ET,,0] — ET,,0] — GJy,0. + GJ .9
- Gsz(U/ + ex) - GQ)'z(ul - 9}) =—m, (16)

The geometric problem parameters used in the above equations are

defined as follows:
See =/ydA, Sy =/di
A A

A= [,
A

SZZ:/WdA Fu:/wsz, FZX:/deA
A A A
FZ},=/xwdA, IXXz/ysz, Ixy=/xydA
A A A
ad
IVVZ/deA J90=/R§dA, JQZZ/Rn—wdA
o A A A ds

JQXZ/R a—ydA
A

A
JZZ_/;(X) dA? n Bs
dx ay\?
Je).—/;RnadA Q_A(a) dA

dx dy ox\?2
Qxy - N g% s ny - /l; (a) dA
O = A 0sds Q.= 4 0s Os

The corresponding boundary conditions at the two ends are
obtained as shown next.
At the fixed end, Z = 0,

u=0, v=0, w=0 (17)
6, =0, 0, =0, 0.=0 (18)
¢=0 19)

At the freeend, Z =L,

Glgt, —GQyp+ GOy (V' +6,) + GO, (u' — 6,) = P, (20)

GJ@XQQ' - Gsz¢ + GQXX(U/ + 97{) + GQxy(u/ - ey) = Py (21)

EAw =P, 22)
- EFZX(p/ + Elme; - Elwe; = Mx (23)
ET.¢ + EL0, — EI.0, = M, (24)

GJyl. — GJg.p + GJo (V' + 0,) + GJp (' — 0,) = M, (25)

Erzz(ﬁ/ - EFZXQ; - Er‘zyeg' = _Mw (26)

Atthe interface of the uncracked and cracked portions of the beam,
the boundary conditions are defined in terms of the continuity
conditions, as described in the following.

A. Continuity Conditions

Because of different warping functions used between the closed
and the open cross sections, the discontinuity of warping dis-
placements at the interface of the two sections across the beam
portion is inevitable. To deal with this issue, the thin-walled-beam
theory is modified by incorporating the technique proposed by
Gunnlaugsson and Pedersen [2,3] to account for the compatibility
conditions in the standard governing equations. To facilitate the
minimization of the difference, they proposed to include additional
constants in the representation of the warping displacement only on
one side of the interface, as explained in the following.

At the interface of the two different cross sections, the warping
displacement field of the element on the right-hand side is rewritten
to include the assumed compatibility constants as follows:

Wi (s, 1, 2) = w,(2) + y(5)0,(2) — x(5)0,(2) — [d; + dry(s)
— dsx(s) + dyy"E (s, n)]g(2) (27)

whereas the warping displacement of the right element remains
unchanged as

w (s, n,z) = w(z) + y(5)0,(2) + x(s)6,(z) — "' (s, n)p(2)
(28)

The compatibility constants d; are assumed to be associated with
the measure of warping degree of freedom ¢(z), while each of them
relates to each cross section’s dimension. Detailed descriptions can
be found in [2,3]. To calculate these constants and define the
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compatibility condition, we minimize the following integral norm of
the pointwise difference between the warping displacements:

I = /(w]cﬂ _ wright)z dA (29)
A

where the superscripts left and right denote the closed and open cross
sections, respectively.

The necessary conditions for the minimization of this functional
provide the compatibility conditions and the following four
equations to calculate the constant d;:

ol left ight

=0 eft _ i dA =

5q, =" A (w'eft — yyright 0 (30)

al i )

— =0 [ (W —wieh)ydA =0 31)

ad, A

al i )

— =0 /(wletl —wieh)ydA =0 (32)

=0: left n;:ht right dA =0 33

8 d4 / (w ) (33)

On expansion, the above equations at each interface between the
discontinuous sections lead to the following four simultaneous
equations for calculating the constants d; expressed in terms of the
integration constants of the beam cross sections:

d Arlghl + d2 nghl dgsgl‘om + d4 rlghl Sgejft (34)
d1 rlght + dz nght —d3 nght + d4r;i}ght — l"‘ziﬁ (35)
d Sl;lyght + dz nght d’; nght + d4 ?yght — l—\ge}n (36)

d Snght +d21—‘?§m—d31—‘?}gm +d l—‘rwht — F”lr (37)

where the integration constants of the beam cross section (4, S, S,,,
Sl Ly, 1y, U, T and ) are the same as defined earlier after
the equilibrium equations, but they are now defined separately for the
left and right parts of the beam cross sections. See Table 3 for a list of

the cross section’s constants. Another constant, undefined earlier, is
— left 7 right
L= [ wtyenan
A

which uses the warping function on the left- and right-hand-side
cross sections.

Here, it is noted that all integration constants are calculated using
the shear centers as references for both cross sections. At this step, the
constants obtained using the pole as the references cannot be used
because of the flexural-torsional coupling. However, in order to
obtain the unique values of all constants, no matter which element is
assumed to be on the left-hand or the right-hand sides, an additional
normalization needs to be implemented. It requires that the product
of both constants d, (one when the closed cross section is on the left
and the other when the closed cross section is on the right) be
normalized. This is essentially equivalent to the orthogonality, as

explained in [3]. The compatibility constants can be implemented
into the model directly as follows:

Ul = u|right (38)

Vjer, = v|right (39)

Wheg + d1Pliey = Wliigne (40)
Orliete + da@liere = Oxlrighe (41)
Oy liere — d39liere = Oy lrigne 42)
0. lier = 6. (43)
d4¢|left = ¢|rigm 44)
le]eft = Px'right 45)
Py|leﬂ = Py|right (46)
47

M Jiere = M, Lrigne (48)

M, |ieq = M, |rigne 49)

M | = (50)

+ doM | g + d5M, — dyM | ione (51)

III. Analytical Solutions

A. Solution Approach

To obtain the analytical solution for the general case, we rewrite
the set of equations as a set of coupled first-order equations using
state variables. For this, the following auxiliary variables are
introduced: u; =u', v, =V, 0, =0, 0,=0, 0,=0, and
¢, = ¢, where prime denotes the derivative with respect to z; w is
automatically uncoupled and is thus not included in the analysis. The
state vector of variables is defined as

X=|u wu v vy 0, 0O, 9y evl 0, 0, ¢ ¢1JT

z

With the assignment of auxiliary variables as indicated above, the
coupled equations can be rewritten in the state form as
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M1 A7 o 7]
-GQ,, =G0,y —GJy, )
v/
_GQ,\'y _GQxx _GJ,QX U/l
1 0,
—EI,., E]Xy ET_, 6’;1
1 A
E]Xy —Elyy —EFZ}, 6’;,1
0.
—GJy, ~GlJy, —~Glyy 0,
1 ¢
L Erzx _EF7y _Erzz L ,1 .
M1 7 u 7 0 7
GQxy _GQ)'}' _GQyz u; DPx
1 v 0
GQxx -G Qxy _Gsz Vg Py
1 b, 0
-G xy -G xx -G xx G xy -GJ x G Xz ex X
_| -6e, —Go.. -Go 0. ) || 5
'y
Go,, GO, GO, -GQ,, Gl —GO, 6, m,
1 0. 0
GJQX G.Ig‘ —G.Igz 9z| m,
1 ¢ 0
L GQyz GQX: GQXZ GJ@: _GQ}'Z _G‘Izz JL ¢1 L —my |
Equation (52) yields the first-order ordinary differential equation Xy=®M(z)c (61)

(ODE) in the form
AX'=BX+F (53)

X'=A"'BX+A'F (54)

To obtain the solution of such equation, one can use the
eigenfunction expansion approach. This approach would need to be
modified, however, to deal with the zero or repeated eigenvalues of
the state equations that could occur in this case. Such modifications
can be conveniently affected by the use of the Jordan canonical form
of the system following Weintraub [22]. Here, the Jordan matrix and
the corresponding matrix of transformation are represented by J and
¢, respectively. Let us define

X=00 (55)
Substituting Eq. (55) into Eq. (54), we obtain
Q' =A"'BOO+A'F (56)
Premultiplying Eq. (56) by ®~!, we obtain
2790 =0'AT'BOO+O'AT'F (67
Consequently,
Q'=J0+E (58)

where '@ =1, 7'A'Bd =/, and ®'AT'F=E

The final solution of the ODE in Eq. (58) is typically written as the
combination of homogeneous and particular solution as

X=X, +Xy (59)

The particular and homogeneous solution in this equation can be
expressed as

_P=gmfm*§dz (60)
0

where M(z) and ¢ are the matrix of functions and the vector of the
constants of integration, respectively. The details of various matrices
and vectors are provided in Appendix A. Substituting these forms of
particular and homogeneous solutions in Eq. (§9), we obtain the
following for the complete solution:

X = ®[I(2) + d(2)] (62)

where
1(z) =M(2) / M(z)"'Edz
0

and
d@) = M) e

Using this solution, all response quantities related to the state
vector can thus be written in analytical form. For example, the angle
of twist and deflection in the ith beam section, respectively, are given
as

n

00 =" o (2) + df (2)] 63)
k=1

L0 — ZQE'ZU;D(Z) +d? ()] (64)
k=1

where 7 is the dimension of the state equation, which is n = 12 in this
case.

To obtain the constants of integration in vector ¢, we need to apply
the boundary and continuity conditions in each portion of the beam.
For each section, the vector ¢ consists of 12 constants of integration.
Thus, for a three-section beam, there are 36 such constants of
integration. In addition, there are four constants d; that were
introduced in enforcing the warping displacement compatibilities at
each section interface. With two section interfaces, this introduced
eight more constants to be calculated. Thus, a three-section beam will
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require the calculation of a total of 44 constants. The six boundary
equations (17-19) at the fixed end; six boundary Egs. (20-26),
excluding Eq. (22) at the free end; four minimization conditions (34—
37) at each interface; and 12 additional conditions in equations (38—
51), excluding Eqgs. (40) and (47) at each interface provide just the
right number of equations to calculate all constants of integration in
vector ¢ and d;. Application of these boundary conditions leads to the
following simultaneous equations to solve for the constants:

Ge=Fg (65)

The details of the elements of the matrix G and vectors ¢ and F; in
Eq. (65) are provided in Appendix B. Knowing these constants, one
can obtain any response quantity of interest that can be defined in
terms of the state vectors. This expression is used in the probabilistic
analysis in the following section.

B. Probabilistic Analysis

In this section, the safety-index approach used to evaluate the
effect of the presence of a crack on the system performance in
probabilistic terms is briefly described. It is assumed that the crack
length L, and its location L. along the beam are random quantities
defined by two independent random variables. Other problem
parameters such as cross-sectional dimensions and the applied load
could also be assumed to be random quantities. However, to simplify
the formulation and to demonstrate the methodology, it is assumed
that just these two crack parameters are random variables. To
evaluate probabilistic performance, a limit state is defined for which
the performance of the system is examined. The limit state could be
defined in terms of a stress or a deformation quantity exceeding the
allowable values. Herein, for demonstration, the failure limit state is
defined as the angle of twist at the free end in the damaged beam
exceeding the angle of twist at the same point in the uncracked beam,
0", by a fraction «. This condition can thus be stated as
0% > (1 4 )" . The corresponding limit-state boundary for safety
analysis is then defined as follows:

g(L. Ly) = (1 + a)f® — gt (66)

where g(L., L;) > 0implies safety and g(L., L,) < 0 as the failure.
The angle of twist at the tip of the cracked beam, 6'?, is defined by
Eq. (63) above.

To obtain the probability of failure or survival, the probability
distributions of the variables that define the limit state are required to
calculate the probability mass over the corresponding domains.
Often, however, it is not possible to have reliable information about
the distribution of the variables and only the first two moments (mean
and variance) can be reliably obtained. Even if the distribution
information were available, it is often very difficult to calculate the
probability mass over the survival or failure domains, if the limit state
is nonlinear. Methods have been developed to improve the accuracy
for such calculations. The main difficulty, however, remains in
defining the distributions of the random variables. With the limited
information available about the first two moments, one can obtain a
good measure of the reliability in terms of the safety index. If the
involved variables can also be assumed to be Gaussian random
variables, then the safety index provides the exact value of the
probability if the limit-state boundary is linear and approximate value
if the limit-state boundary is nonlinear. The approaches to calculate
the safety index and the probability of failure for a given limit state
are well established. In the following, it is assumed that the mean and
standard deviation values of the two random variables that define the
crack parameters are known. To calculate the safety index conve-
niently, the well-known Rackwitz and Fiessler [10-12] iterative
algorithm is implemented. This algorithm calculates the design
point, which is the closest point to the limit-state boundary in the
reduced space of the variables. The coordinates of the design point in
the space of the variables are defined as follows:

L:k = Me + ﬁaC'U('7 L; = Mg + ﬁadgd (67)

where an asterisk denotes the design-point value of the variables; (..
and o, are the mean and standard deviation values of the crack
location L ; i, and o, are mean and standard deviation values of the
of crack length L ;; B is the safety index; and . and ¢, are direction
cosines of the perpendicular to the limit state at the design point.
These direction cosines are defined as follows:

—g. s

o, = 3L, 68)

9 1) 5 px
VoRGER + 03 GE)? Izt

dg
—Oayr,

= (69)

9 1) *
VORGP + oG s

The safety index, as the shortest distance in the reduced space, is
thus defined as follows:

oy =

B =L = ) /o) + (L — 11a)/04)°] (70)

For nonlinear limit states, the calculation of the safety index is an
iterative process in which appropriate values are assumed for the
design point at which the gradients and direction cosines are
calculated. The design point defined by Eq. (67) lies on the limit state.
Thus, substitution of Eq. (67) in the limit state and solving for the
safety index provides the first value of the safely index. This value is
used in Eq. (67) to obtain the new design point and the process is
repeated. The convergence is fast in most cases. The gradients of the
limit-state function required in Eqs. (68) and (69) are obtained by the
chain rule of differentiation. For example, the partial derivatives of
the limit-state function with respect to the variables L, and L,
required in Egs. (68) and (69) are defined as follows:

dg agtp 2. 96 31,
L, dL, 4= dl, dL, D
tip 3 tip

L, oL, 4= dl, oL,

where [}, [,, and /5 are the variables of the coordinates of ends of the
three beam sections shown in Fig. 1. These coordinates can be
expressed in terms of the random parameters of the crack, L, and L,
as follows:

L
I, =L,—=%,

L
5 ly=1—L,+ =% (73)

I, =L, >

The partial derivatives, appearing in Egs. (71) and (72), are defined
in terms of the following partials used in the chain rule.
Derivatives of [,, (m = 1, 2, 3) are as follows:

811 -1 812 -0 813

= = =-1 74
aL, oL, 9L, (74)

al, 1 al, al, 1

L =__ 2 = 3 = 7

With the angle of twist at the tip defined as follows:

n

0 = 07 () = YOG (1) + Y ()] (76)

k=1
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Its partial derivatives with respect to /,, are defined as follows:

) _ 5 [0
i, =\ al,

1P (1) 9dP (1)
3) k 3 k 3
+q>gk( oL + o )} (77)

(19 (1) + df (13)]

It can be shown that all elements of the Jordan matrix and
transition matrix in different segments are not functions of /,,. Thus,

05 _ ao?)ugzi {q,g?(al,i”(m +ad£3>(13>)}

alm 81”" k=1 alm 8lm
(78)
Derivatives
o™
al,,
and
ad"
al,

depend upon the matrix of functions associated with Jordan
canonical form, which are defined in Appendix A.

IV. Numerical Results
A. Structural Response

In this section, we present the numerical results for an example
problem. It is assumed that the crack is symmetrically placed in
longitudinal direction and all three portions of the beam have at least
onefold of spanwise symmetry about y—z plane. For this onefold
symmetry, several geometric parameters of the cross section (such as
Q.ys Liys Jox» Jgy, and Q) are zero. The contour origin is taken on the
axis of symmetry; thus, the warping displacement of the contour
origin can be dropped. This means that the points on the contour
origins along the span do not warp due to the fact that every point
along the fold of symmetry is fixed. This simplifies the equation
considerably to the following set:

..'......> ~

-0.007

0.007 -0.007

a) Closed cross-section

0.06

[ox
/

-0.02 0.02

-0.06

b) Open cross-section
Fig. 3 Numerical plots of warping functions.

To obtain the numerical results, the thin-walled beam is assumed
to be 6 m long, with cross-sectional dimensions of 0.4 m width, 0.2 m
depth, and 0.01 m thickness. The modulus of elasticity is assumed to
be E=71.7 GPa and v =0.33. The numerical expressions of
warping functions used herein are as follows:

- GQ_Vy(u// - 01}) = Dx (79)
— ET,¢" — EL,,0) — GQ,,(u' — 0,) = m, (80)
- G‘l%eg + G]quﬁ, =m, 81

— ET,,¢" — ETO] — GJy 0, + GJ . = —m, (82)

From this set, the equation of the beam displacement along the y—y
and z—z axes are omitted, as they are uncoupled from this set and can
be separately integrated. This reduced set of equations can be readily
decoupled to obtain the analytical solution for each degree of
freedom, as long as all distributed loadings are described as
integrable functions.

n

co
Fig. 2 Kinematics of a beam cross section.

—0.0067 + 0.033(—=0.4 —s), —0.6<s<—0.4
0.0067 — 0.067(—=0.2 —s5),  —0.4 <s5<—0.2
Y. (s) = { —0.033s, —02<s5<02
—0.0067 4 0.067(=0.2 +5), 02 <s<0.4
0.0067 — 0.033(=0.4 4+ 5), 04 <s<0.6
(383)
Y, (s,n)

—0.012—0.34(—s — 0.4) — n(s + 0.6), —0.6 <s<—0.4

0.028 — 0.2(—s — 0.2) — n(s + 0.06), —04<s5s<-02
=< —0.14s — ns, —02<s5<0.2
—0.028 + 0.2(s — 0.2) — n(s — 0.06), 02<s<04
0.0012 + 0.34(s — 0.4) — n(s — 0.6), 04<s5<0.6
(34)
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Fig. 4 Angle of twist along the beam span.
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Fig. 5 Lateral deflection along the beam span.
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Fig. 6 Distributed twisting moment along the beam span.

These warping functions are shown in meters in Fig. 3.

For this particular section, it is found that the compatibility
constants have the following values, d, = d, =0, d; = —0.0294,
and d, = 0.122 when the open cross section is on the right-hand side
and d; = 0.240 and d, = 8.16 when the open cross section is on the
left-hand side.

To verify the accuracy of the cracked thin-walled model and
analytical solution approach proposed here, the numerical results of
cracked beams obtained by this approach are compared with the
results obtained for the same beams by the finite element analysis
using the shell elements. The numerical results for the angle of twist
and lateral deflection of three beams with three different crack sizes
are obtained and compared. The beams are subjected to the combined
loadings of a torque, M, =1 N-m, and a lateral shear force,
P, =1 N, applied at the beam tip. Figure 4 shows the comparison of
the angle of twist values, and Fig. 5 shows the lateral deflection
values for the three cases. Each line represents a different crack size in
percentage with respect to the beam length.

The results clearly show that even for large cracks, the proposed
beam model yields quite accurate results for both the twist angle and
deflection, compared with those obtained with shell finite elements in
ABAQUS®, thus validating the accuracy of the beam model and the
analytical solution.

B. Probabilistic Safety Analysis

We next show the results for the crack parameters assumed to be
Gaussian random variables, with the mean and standard deviation
values taken as L. : N(3.0, 0.5) for the random variable of the crack
location and L, : N(0.6,0.15) for the random variable of the crack
size. The value of fraction « in Eq. (66) is assumed to be o = 0.1. To
investigate the effects of different load patterns, a study is conducted

for three different cases of distributed loadings: 1) uniform distri-
bution, 2) triangle shape, and 3) quarter-ellipse shape, as depicted in
Fig. 6.

For comparison purposes, the areas under all shapes of loadings
are set equal to 100 N - m. To obtain the values of the safety index 8
for such failure criteria, the iterative approach proposed by Rackwitz
and Fiessler [12] is used. Since the limit-state function is only
implicitly defined in terms of the random variables L. and L, the
gradients of the limit-state boundaries with respect to these variables
are calculated by using the chain rule. The design-point and safety-
index values converged in three iterations for all three loading cases.
The final values for the design point, safety index, and probability of
nonexceedance of the limit states are shown in Table 1 for this case.
As both variables are Gaussian, the probability of failure is simply
defined as p, =1 — ®(f). As one would expect, the safety-index

Table 1 Final converged values of design points and safety-index
values for a crack with parameters of location: L.: N(3.0,0.5),
L;: N(0.6,0.15), and « = 0.1

Design-point values

Loading type Location, Size, L}, Safety Probability
L index of failure
Uniform 2.8268 0.74272 1.0125 15.6%
Quarter-ellipse 2.7414 0.75526 1.1571 12.4%
Triangular 2.5841 0.78151 1.4684 7.10%

Table 2 Comparison of probability-of-failure values calculated by
Rackwitz-Fiessler algorithm and Monte Carlo simulation approach

Methodology Probability of failure, % Computation time, s
Uniform loading
Proposed method 15.6 31.9
Monte Carlo simulation 17.4 768
Quarter-ellipse loading
Proposed method 124 339
Monte Carlo simulation 11.9 2,380
Triangular loading
Proposed method 7.10 58.8
Monte Carlo simulation 7.30 826

Table 3 Constants of the cross section

Sa= [yt = [Ra@r
A A
9
sw=[di Jg,:/R,,—wdA
’ A : A ds

Fzz:[wsz j@x:/Rl1aldA
A A0S
ax

L= [wwi = [R50
A ? 4 08
2

ro=fwi o= [(F)w

A A ds

P = / oveda o, = [ W gy

) A 7 4 05 0s

L= / y*dA
A

I, =[xydA 0, = B_yB_w dA
A

I,\:\‘=/xsz 0y, = 8_x3_wdA
; :
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Fig. 7 Plots of safety indices and probabilities of failure vs coefficient of variation for « = 0.3, quarter-ellipse loading, and different mean crack sizes.
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Fig. 8 Plots of safety indices and probabilities of failure vs coefficient of variation for mean crack sizes of 15%, « = 0.3, and three different loadings.

value is the lowest for the uniform loading and highest for the consistency and the validation of this approach. The table also
triangular loading; the reverse is also true for the probability-of- provides the computation time required by these two methods on the
failure values. same computer, showing the relative computational efficiency of the
Table 2 shows the comparisons of the probability-of-failure values safety-index approach.
computed by the above safety-index approach and the Monte Carlo In Fig. 7, we show the values of the safety index and the
simulation. The results obtained by the proposed approach are based corresponding probabilities of failure for the case of quarter-ellipse
on three cycles of iteration, and those from the Monte Carlo approach loading for a crack location defined by parameters L.: N(3.0,0.5)
were obtained using 500 simulations. The results demonstrate the and for three crack sizes with mean values of 10, 15, and 20% and
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Fig. 9 Plots of safety indices and probabilities of failure vs coefficient of variation for mean crack sizes of 20%, « = 0.3, and three different loadings.
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Fig. 11 Plots of safety indices and probabilities of failure vs location of crack for coefficient of variation of 20 %, « = 0.3, quarter-ellipse loading, and two

different mean crack sizes.

increasing coefficients of variation. For this figure, the limit state is
defined for o = 0.3. As expected, the safety-index values decrease
and the probability-of-failure values increase with the increasing
coefficient of variation values. For a mean crack size of 21.0%, the
probability of failure is 0.5 and the value of safety index is zero.
We call this set of values the critical mean crack-size values. This
critical crack size depends upon the value of the parameter «. For
this critical value, the limit-state boundaries pass through the origin
of the reduced space. For any mean crack-size values higher than
the critical values, the safety-index values are negative. Also in
such cases, the safety-index and the corresponding probability-of-
failure values decrease with the increase in the coefficient of
variation. This is because as the coefficient of variation value
increases, the chances of the crack length approaching the critical
length also increase, thus causing the probability of failure to
increase to 0.5. These counterintuitive cases are not presented here,
however. In Fig. 8, we demonstrate the values of the safety index
and the corresponding probabilities of failure for three different
loadings.

In the next two sets of figures, we compare the effect of the three
loading patterns on the safety index and probability-of-failure values
for increasing values of the coefficient of variation of the crack size.
The mean location of the crack is in the middle of the beam: 3 m from
the fixed end. The mean crack size in Fig. 9 is 15% of the beam length
and in Fig. 10is 20% of the beam length. Although the total torque on
the beam is the same for the three loading distributions, for this
selected location of the crack, the uniform loading is the most severe
of the three loadings, as it leads to the lowest set of safety-index
values and the highest set of probability-of-failure values.

In Fig. 10, we investigate the effect of different loading patterns on
the safety-index and probability-of-failure values for different
locations of crack along the beam span. For the crack size, its mean
value is 15% of the beam length and its coefficient of variation is set at
20%. It is observed from the figure that both the locations of damage
and the patterns of loadings do impact the values of the safety index
and the corresponding probability of failure. For example, the safety
index of the uniform-loading case is higher than that of quarter-
ellipse loading case when the location of damage is less than a certain
value around L/4 from the fixed end. This trend reverses for cracks
located beyond that value near L/4.

In Fig. 11, we investigate the effect of different sizes of damage on
the safety-index and probability-of-failure values for different
locations of cracks along the beam span. These results are obtained
for the loading pattern of quarter-ellipse. All crack sizes are assumed
to have a coefficient of variation of 20%. As expected, the beam
subjected to less damage possesses the higher safety index and lower
probability of failure. The safety index increases and the probability
of failure also decreases, as the crack is located away from the fixed
end.

V. Conclusions

The paper presents an analytical approach to calculate the
response of a thin-walled beam with a crack oriented along the beam
length. The governing equations and associated boundary conditions
of the system are derived by variational principle. The coupled
equations are then expressed in a state-space form, which facilitates
their uncoupling using the Jordan canonical-form approach. It is
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shown that this simple thin-walled-beam model and the proposed
analytical solution are able to accurately capture the effect of crack in
the calculation of the beam deformations. Thus, this analytical
approach can be used to study the effect of various damage param-
eters in a rather efficient manner. The analytical solution obtained
with Jordan canonical-form approach is used in the probabilistic
analysis, assuming the crack location and crack size as random
variables. First-order reliability analysis is used to calculate the
safety index and probability of failure for a limit state defined in terms
of the angle of twist. The methodology for calculating the gradients
for the limit boundary needed in the probabilistic analysis is
presented. Numerical results demonstrating the application of this
approach are presented for several combinations of parameters: crack
size, crack-size variability, crack location, and different loading
patterns. The numerical results show consistent trends, such as that a
random crack near the root leads to a higher probability of failure than
a crack farther away from the root, the reliability estimates depend
upon the loading patterns, larger uncertainty in the crack parameters
leads to larger probability of failure, etc. Such analyses can be
beneficial at the preliminary design stage of an aircraft wing so that
the weak point of the structure can be detected and reinforced accord-
ingly. More important, this proposed analytical methodology can be
used to verify the results obtained by comprehensive compu-
tational methods for both deterministic and nondeterministic
problem scenarios.

Appendix A: Numerical Examples of Jordan
Canonical Form

In this Appendix, the details of the vectors and matrices used in the
Jordan canonical-form solution of the governing equation are
provided. See Table Al for the system configuration specifications.

Since the cross section of the cracked beam in our case has onefold
symmetry, only four of the six equations of equilibrium are coupled.
For this case, the state-variable and force vectors are defined as
follows:

X=1lu u 0, 0, 6, 0, ¢ ¢

Y z

E: |_0 Px 0 my 0 m; 0 _meT

The state and other matrices in the state equations for the cracked
and uncracked portions of the beam are defined as follows.
For the uncracked portion,

1 0o o0 o0 0 0 0 0
0-216x1060 0 0 0 0 0
o o0 1 0 0 0 0 0
4—|0 0 0-191x1070 0 0 0
““lo o o o 1 0 0 0
0 0 0 0 0-647x10°0 0
o 0 0 0 0 0 1 0

0o 0 0 0 0 0 0-127x10]

K 1 0 0

0 0 0 —2.16 x 10

0 0 0 1

p_ |0 216x10° —2.16x10° 0

=10 0 0 0

0 0 0 0

0 0 0 0

K 0 0 0

F=10 0 0 0 0 1667 0 0]

The Jordan matrix J, the matrix of transformation ¢, and the matrix of
functions M (z) can be determined following Weintraub [22]. A built-
in MATLAB function called jordan has been used to facilitate
these calculations. Derivations and comprehensive details can be
found in the text by Weintraub [22]. The calculated matrices are
defined as follows:

0100 O 0 00
0010 0 0 00
0001 0 0 00
;_l0000 o 0 00
=10 000 708 0 00
0000 O -708 0 0
0000 O 0 01
(00000 0 0 0 0
~1128 0 1 0 0 0 023 0 ]
0 —1128 0 1 0 0 0 023
0 —1128 0 0 0 0 0 023
o_| O 0 —1128 0 0 0 0 0
= 0 0 113 0 —0.01 001 1.13 0
0 0 1 1.13 —0.06 —0.06 0 1.13
0 0 0 1.13 —0.56 —0.56 0 1.13
o 0 0 0 —398 398 0 0 |
[1 z 2 2 0 0 0 07
01 z % 0 0 0 0
00 1 2 0 0 0 0
Mz =|0 0 0 1 0 0 0 0
0 0 0 0 exp(7.08) 0 0 0
000 0 0 exp(—=7.08) 0 0
00 0 0 0 0 1z
L0 0 0 0 0 0 0 1]

For the cracked portion,

1 0 0 0 0 0 0 0

0 —2.16x10% 0 0 0 0 0 0

0 0 1 0 0 0 0 0
A 0 0 0—-1.91x107 0 0 0 —4.59x10°
~— 10 0 0 0 1 0 0 0

0 0 0 0 0 —6.47x10° 0 0

0 0 0 0 0 0 1 0

K 0 0 —4.59x10° 0 0 0 —1.95x10° |

0 0 0 0 ]
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 —7.19 x 10°
0 0 0 1
0 7.19x10° —7.19 x 10° 0 |




Downloaded by UNIVERSITY OF ILLINOIS on March 7, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.J051244

1276

F=10 0 0 0 0

[s+]
Il
cocococooocoo

1 0
0 0
0 0
2.16 x 108 —2.16 x 108
0 0
0 0
0 0
0 0
16.67 0 0]

KUNAPORN ET AL.
0 0 0 0 0 ]
—2.16x 10% 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 —6.47 x 10°
0 0 0 0 1
0 0 6.47x10° —6.47 x 10° 0 |

The Jordan matrix J, the matrix of transformation &, and the matrix
of functions M (z) for this case are as follows:

[0 1 0 0 0 0 0 07
0010 0 0O 0 0
00 0 1 0 0o 0 0
J= 00 0 0 0 0O 0 0
- 00 0 0 —0.11 0o 0 0
00 0 0 0 011 0 O
00 00 0 0 0 1
L0 0 0 O 0 0 0 0]
L}
[—11.28 0 1,409 0 5,114 —5,114 255 O
0 -—-1128 0 1,409 —-576 =576 0 255
0 -—-1128 0 1,408 —-576 —-576 0 255
. 0 0 —-1128 0 64.92 —64.92 0 0
o 0 0 -5398 0 —21,29221,292 -600 O
0 0 0 —5,398 2,399 2,399 0 —-600
0 0 0 —5,402 2,401 2401 0 —-600
L O 0 0 0 —271 271 0 0 |
(1 z £ 2 0 0 0 07
01 z % 0 0 00
00 1 z 0 0 0 o0
M(z) = 00 0 1 0 0 0 0
I 0 0 0 0 exp(—0.11) 0 0 o0
00 0 O 0 exp(0.11) 0 O
00 0 O 0 0 1 z
LO 0 0 O 0 0 0 1.
Table A1 System configuration specifications
Parameters Values

Section shape
Section dimensions
Width
Height
Thickness
Material properties
E
v
Loading type

Loading magnitude

Rectangular thin-walled

0.4 m
0.2 m
0.0l m

71.7 x 10° Pa,
0.33

Uniformly distributed

twisting moment
16.67 N/m

Appendix B: Elements of Matrix G, and Vectors ¢
and Fg in Eq. (65)
Matrix G, columns 1-12:

G(1,1:12) = " M(0)®

G(2,1:12) = " M(©0)"

G(3,1:12) = @’ M(0) ™D

G(4,1:12) = oV M(0)®

G(5,1:12) = &’ M(0)™

G(6.1:12) = @{) M(0)V

G(7.1:12) = ®\"Mm(1,)™M

G(8.1:12) = " M(1,)™

G(9,1:12) = [@ + d, @M (1)®

G(10,1:12) = [®4" — d; @M (1)

G(11,1:12) = @ M (1)

G(12,1:12) = d, @V M(1)D

G(13,1:12) = [GJ5) @) — GO @) + GOl (@ + @)
+GOW (@) — )Ml

G(14,1:12) = [GJ) @) — GO ) + GOl (@) + @)
+GOW (@) — M)
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G(15,1:12) = [-ETQ @Y + EIQ " — EIY) &M (1,)™

G(16,1:12) = [ETY @) + EIY & — EIy) 0{"1M (1)

G(17,1:12) = [GJ5) @) — GIP @) + GJV (@ + o)

1277

G(21,13:24) = [0 + d, @ VM (1,)®

G(22,13:24) = [ — 4, @\ M (1,)®

G(23,13:24) = ®P M(1,)@

+GI) (@) — B m()

G(24,13:24) = d, @PM(1,)®

G(18.1:12) = [ETV @) — ETV @ — ET @M (1)

Matrix G, columns 13-24:

G(7.13:24) = —®P M(0)@

G(8,13:24) = -0 M(0)®
G(9,13:24) = -0 M(0)®
G(10,13:24) = — 0P M(0)@
G(11,13:24) = — 0P M(0)?

G(12,13:24) = 0@ M(0)®

G(13,13:24) = —[GJ) @) — GO @ + GO (@ +

+GOR (2 — )M ()@

G(14,13:24) = —[GIP ) — GOZ @) + GOR () +

+GOR (@ — &M (©0)@

G(25.13:24) = [GJP @) — GOR @) + GOR (@ + of)
+GOY (@ — &) M (1)@

G(26,13:24) = [GJP D) — GOR T + GoR (@ + o)
+GoY (@ — &) M (1)@

G(27.13:24) = [ETQ @) + EIY @ — EIS & M (1,)®
G(28.13:24) = [ETR @) + EIY @ — EIY 0P 1M (1)

G(29.13:24) = [GI ) ) — GI @) + GI (2 + 2f)
+ GI (@ — DM (1)

)
G(30,13:24) = [ETD @) — ETR @ — ETY oM (1,)
Matrix G, columns 25-36:

@(2))

=5

G(19,25:36) = P M(0)®

G(20,25:36) = M (0)®

G(15,13:24) = —[-ET2 @Y + EIY 0P — EIS) Q1M (0)

G(21,25:36) = P M(0)®

G(16,13:24) = —[ET @) + EI) @ — EI) & 1M(0)®

G(22,25:36) = P M(0)®

G(17,13:24) = —[GJJ ) — GJP @) + GIP (D + @)

+ Gy (@ — )M (O)

G(18,13:24) = —(d,[-ET2 @) + EI? 0 — EIS) 0]

+ &[ETR @) + EIS o — EIY)] - d,[ET? @)
— Er el — ErS o) M)

G(19,13:24) = P M (1,)@

G(20,13:24) = @P M(1,)@

G(23,25:36) = @ M(0)®

G(24,25:36) = M (0)®

G(25,25:36) = —[GJY) @) — GO @) + GoY) (@) + o)

+Goy (@ — &M

G(26,25:36) = —[GID DY) — GOV @) + GO (@ + of)
+ GO (@ - &) MO
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G(27,25:36) = —ETS @) + EIS @ — EIS) 0 1M (0)®

G(28,25:36) = —[ETY @) + EI) & — EI) & 1M(0)

G(29.25:36) = —[GJY @) — GIP ) + GJ) (@ + )
+GI (@5 — &M

G(30,25:36) = —(do[-ETS @) + EID 0 — EIY) 0]
+ d[ETS @) + EIR @) — EIV)] — dy[ETY &)
— ETQ Y — ErY o )M (0)®)

G(31,25:36) = [GJg) @) — GO @) + GOY (2 + oY)

+GOW (@ — )M (15)®

G(32.25:36) = [GJ) @f) — GOY @) + GOR (@) + o)
+GOW (@) — &M (L)

G(33.25:36) = [-ETQ @) + EIQ @ — E1R) oM (1)

G(34,25:36) = [ETY @) + EI) @) — EI) 1M (1)

G(35,25:36) = [GJS @) — GJP @) + GJY (@ + @)
+ GI (95 — o) M (L)

G(36.25:36) = [ET' @} — TS & — ETG o 1M (1)

Vector ¢, rows 1-12:

c(1:12,1)

—_r7.0 1 (O (H (1 (@ (H (b () (D (D) (DT
=[c\" ¢’ & o Cs Cq €7 Cg Cg  Cjp €y ci;

Vector ¢, rows 13-24:

c(13:24,1)

—_1. @ 2 0 2 . @ .2 .2 .2 . .37
=[c\7 ¢ & o Cs Cq €7 Cg Cg  Cjp €y v

Vector ¢, rows 25-36:

c(25:36,1)

=[c® O O

c§ (3)

RS

ct @3 B 6 .0

3 3 G
cg’ 5 g cg c(l) & BT

o ¢ ‘2
Vector Fg, rows 1-12:

Fo(1,1) = =" 1(0)®
Fg(2,1) = =0 1(0)®

Fs(3,1) = _le)@(l)

Fg(4,1) = -0 1(0)®

Fg(5,1) = =@ 1(0)®

F(6,1) = =@ 1(0)®

F(1.1) = 27 1(0)® — @V 1(1,)®

Fg(8,1) = @P1(0)@ — @4 1(1,)™

F09.1) = @2 1(0)@ — [ + d, ®{)11(1)

F5(10,1) = dP1(0)® — [@ — d,@{)11(1) D

F(11,1) = &5 1(0)® — 8" 1(1,)™

F(12,1) = ®01(0)? — d,®{)1(1)"

Vector Fg, rows 13-24:

F(13,1) = [GIP Y — 6o 0P + GO (2 + o)

+GOR(®Y — &)]1(0) — [GI) @Y — GO @Y

+GoW (@ + o) + GOl (@ — d))1(1)

Fo(14.1) = [GJ) of) — GO2 o) + GO (e + of)
+GOY(@Y — @)]1(0)® —[GIY @) — GOl o)
+GoW (@ + o) + Gl (@ — o) 1(1)™

F(15,1) = [-ETR @7 + EIY ) — EL) 0711(0)?
—ErY ol + eIV o — EIY) o )1(1,)™

Fs(16,1) = [ETS @) + EI§ ©F — ELY 2 )1(0)®
—[ETY @) + EIY @ — EIY & )1(1)

Fo(17,1) = [GIG ) — GIZ ) + GI (2 + &)
+GJ (@5 — 2P)IO)? ~ [GJy @) — T, @)
+GJy) (@ + @) + Gy (@) — &)

Fg(18.1) = (dy[-ETR @) + EIF @ — EIY o)
+ d[ETD @) + EIF @ — EIY] - d,[ET? @)
— ETD07 — ETY 9] 1(0)? - [ET @)
_ EFEL)QS) _ Erg)gg)]m(l)



Downloaded by UNIVERSITY OF ILLINOIS on March 7, 2013 | http://arc.aiaa.org | DOI: 10.2514/1.J051244

KUNAPORN ET AL. 1279

F(19.1) = @9 1(0)® — @P1(1,)?
F5(20,1) = @9 1(0)® — @P1(1,)?

Fo(21,1) = @100 — [® + d, ®{)]1(1,)®

F(22.1) = @100 — [ + dy®{)]1(1,)@

Fg(23,1) = P 1(0)® — 0P 1(1,)®

Fo(24.1) = 25100 — d, @ 1(1,)®

Vector F, rows 25-36:

Fe(25.1) =[GIJ) @) — GOR o) + GOl (@) + f)

+GoR (@ — &MI0)® ~[GI) @ — GO @
+GOY(@Y + @) + GOR (Y — @)]I(1y)®

Fg(26,1) = [GID D)) — GO o) + GOl () + @f)
+GOR(® — 1(0)® — [GIP D — GOF @Y

Ox = 2z

+GO2 (@Y + o) + GoR (@ — @)]I1(1,)?

Fg(27.1) = [-ETR @) + EIR @Y — EI5) 00 )1(0)®)
—ETQ0Y) + EI? 0P — EI5 0P11(1,)?

FG(28.1) = [ETY @) + E15) & — EIY&)1(0)
—[ErQef + EI9 0 — EIf) 0P )1(1,)?

F(29.1) = [GI) Y — GI) @f) + GIf) (@) + o)

+GI (@5 — OO ~ [GI ) - G @)
+GI (@ + &) + G (@5 — )I()®

F5(30,1) = (d[-ETQ @) + EI7 @ — EI5) @]
+ [ETY O + EIY @) — EI)] — du[ETE @)
— ETR @) — ETY @) 1(0)® — [ET? 3
— ErY e — ErS odi(L)?

Fo(31.1) = P, ~ [GI] @ — GOR @) + GOY (@Y + L)
+GOW (@ — &)1 (1)

Fe(32,1) = P, —[GIP 0D — 60D oY) + GoP (@ + o)
+GOY (@ — &I

F(33,1) =M, — ETS @) + EIY) @ — EI) 0 1(1,)®

F(34.1) = M, — [ET5 @) + EI & — EI) & )1(1,)

Fg(35,1) =M, — [GJ3) @) — GJY @) + GIP (@ + @)
+ GIG(@Y — BI(15)®

Fs(36,1) = —M, — [ET? ) — ET® o — ETS) 01(1;)@
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